Promyelocytic HL60 cells express NADPH oxidase and are excellent targets in a rapid spectrophotometric microplate assay for extracellular superoxide.
نویسندگان
چکیده
A great number of drugs, toxicants, and growth factors induce the generation of intermediary reactive oxygen species (ROS). The human promyelocytic leukemia HL60 cell line differentiated along the macrophage or neutrophil lineage is a model system that is frequently used for the generation of ROS by various agents. As a primary source of ROS the superoxide anion produced by an enzymatic complex, NADPH oxidase, is well established. The present study shows that nondifferentiated HL60 cells contain NADPH oxidase and can be used as a model for the assessment of oxidant as well as antioxidant compounds. The expression of the multicomponent NADPH oxidase was demonstrated in nondifferentiated HL60 cells at the molecular level by detection of the mRNAs of the components gp91phox, p47phox, and p67phox as well as functionally by phorbol 12-myristate-13-acetate (PMA)-stimulated generation of superoxide, which was susceptible to inhibition by diphenyleneiodonium. The functional assay was performed using the cells in a log growth phase by adapting a standard microplate assay based on the classic superoxide dismutase-inhibitable reduction of cytochrome c. Validation of the microplate assay was carried out both with nonadherent differentiated HL60 cells and the adherent mouse monocyte-macrophage-like RAW 264.7 cell line, as well as with various compounds of oxidant (bleomycin sulfate, cis-diammineplatinum(II), camptothecin, TNF-alpha, IL-1 beta), nonoxidant (4 alpha-PMA, piracetam), and antioxidant (alpha-tocopherol, ascorbic acid) activity. In summary, we established a highly specific, reproducible and--with the aid of the nondifferentiated HL60 cell line--time-saving superoxide microplate assay as a valuable tool for the rapid screening of compounds for oxidative and antioxidative activity.
منابع مشابه
A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors
To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an exc...
متن کاملA Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors
To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an exc...
متن کاملDevelopment of the Superoxide-generating System during Differentiation of the HL-60 Human Promyelocytic Leukemia
Utilizing the induced differentiation of HL-60 promyelocytic leukemia cells as a model of myeloid maturation, we examined the development of the superoxide-generating system, focusing on NADPH oxidase activity, membrane depolarization, and cytochrome b content. NADPH oxidase activity, measured as NADPH-dependent superoxide production, increased with both spontaneous and N,N-dimethylformamideind...
متن کاملDevelopment of the superoxide-generating system during differentiation of the HL-60 human promyelocytic leukemia cell line.
Utilizing the induced differentiation of HL-60 promyelocytic leukemia cells as a model of myeloid maturation, we examined the development of the superoxide-generating system, focusing on NADPH oxidase activity, membrane depolarization, and cytochrome b content. NADPH oxidase activity, measured as NADPH-dependent superoxide production, increased with both spontaneous and N,N-dimethylformamide-in...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 76 2 شماره
صفحات -
تاریخ انتشار 2003